αTAT1 controls longitudinal spreading of acetylation marks from open microtubules extremities

نویسندگان

  • Nathalie Ly
  • Nadia Elkhatib
  • Enzo Bresteau
  • Olivier Piétrement
  • Mehdi Khaled
  • Maria M. Magiera
  • Carsten Janke
  • Eric Le Cam
  • Andrew D. Rutenberg
  • Guillaume Montagnac
چکیده

Acetylation of the lysine 40 of α-tubulin (K40) is a post-translational modification occurring in the lumen of microtubules (MTs) and is controlled by the α-tubulin acetyl-transferase αTAT1. How αTAT1 accesses the lumen and acetylates α-tubulin there has been an open question. Here, we report that acetylation starts at open ends of MTs and progressively spreads longitudinally from there. We observed acetylation marks at the open ends of in vivo MTs re-growing after a Nocodazole block, and acetylated segments growing in length with time. Bias for MTs extremities was even more pronounced when using non-dynamic MTs extracted from HeLa cells. In contrast, K40 acetylation was mostly uniform along the length of MTs reconstituted from purified tubulin in vitro. Quantitative modelling of luminal diffusion of αTAT1 suggested that the uniform acetylation pattern observed in vitro is consistent with defects in the MT lattice providing lateral access to the lumen. Indeed, we observed that in vitro MTs are permeable to macromolecules along their shaft while cellular MTs are not. Our results demonstrate αTAT1 enters the lumen from open extremities and spreads K40 acetylation marks longitudinally along cellular MTs. This mode of tip-directed microtubule acetylation may allow for selective acetylation of subsets of microtubules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

α-Tubulin K40 acetylation is required for contact inhibition of proliferation and cell–substrate adhesion

Acetylation of α-tubulin on lysine 40 marks long-lived microtubules in structures such as axons and cilia, and yet the physiological role of α-tubulin K40 acetylation is elusive. Although genetic ablation of the α-tubulin K40 acetyltransferase αTat1 in mice did not lead to detectable phenotypes in the developing animals, contact inhibition of proliferation and cell-substrate adhesion were signi...

متن کامل

Effects of αTAT1 and HDAC5 on axonal regeneration in adult neurons

The role of posttranslational modifications in axonal injury and regeneration has been widely studied but there has been little consensus over the mechanism by which each modification affects adult axonal growth. Acetylation is known to play an important role in a variety of neuronal functions and its homeostasis is controlled by two enzyme families: the Histone Deacetylases (HDACs) and Histone...

متن کامل

α-Tubulin Acetyltransferase Is a Novel Target Mediating Neurite Growth Inhibitory Effects of Chondroitin Sulfate Proteoglycans and Myelin-Associated Glycoprotein

Damage to the CNS results in neuronal and axonal degeneration, and subsequent neurological dysfunction. Endogenous repair in the CNS is impeded by inhibitory chemical and physical barriers, such as chondroitin sulfate proteoglycans (CSPGs) and myelin-associated glycoprotein (MAG), which prevent axon regeneration. Previously, it has been demonstrated that the inhibition of axonal histone deacety...

متن کامل

Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure

Tubulin undergoes posttranslational modifications proposed to specify microtubule subpopulations for particular functions. Most of these modifications occur on the C-termini of tubulin and may directly affect the binding of microtubule-associated proteins (MAPs) or motors. Acetylation of Lys-40 on α-tubulin is unique in that it is located on the luminal surface of microtubules, away from the in...

متن کامل

Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation.

Protein acetylation is an important posttranslational modification with the recent identification of new substrates and enzymes, new links to disease, and modulators of protein acetylation for therapy. α-Tubulin acetyltransferase (αTAT1) is the major α-tubulin lysine-40 (K40) acetyltransferase in mammals, nematodes, and protozoa, and its activity plays a conserved role in several microtubule-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016